MoDS: Mapping Knowledge with Data Science

I’m really excited to announce the latest addition to our growing stable of computational geography research: a fully-funded ESRC studentship involving the application of cutting-edge techniques (text-mining, topic modelling, graph analysis) to a large, rich data set of 450,000 PhD theses in order to understanding the evolving geography of academic knowledge production: how are groundbreaking ideas produced, circulated, and ultimately succeeded, and how do issues such as researcher mobility and institutional capacity shape this process?

We’re looking for a stellar candidate (either undergraduate or Masters-level) with a demonstrable interest in interdisciplinary research – you will be working at the intersection between disciplines and this will present unique challenges (and opportunities!) that call for resourcefulness, curiosity, and intellectual excellence.

Project Overview

The British Library manages EThOS, the national database of UK doctoral theses, which enables users to discover and access theses for use in their own research. But the almost complete aggregation of metadata about more than 450,000 dissertations also enables us to begin asking very interesting questions about the nature and production of knowledge in an institutional and geographic context across nearly the entire U.K., and this anchors the project in quintessentially social science questions about the impact of individuals, work, and mobility on organisations and cultures.

However, textual data of this scale is solely interpretable and navigable through ‘distant reading’ approaches; so although it remains rooted in the interests and episteme of the social sciences, the research involves genuinely interdisciplinary work at the interfaces with both the natural sciences and the (digital) humanities! At its heart, this project is therefore an exciting example of ‘computational social science’ (Lazer et al. 2009) in that it involves the application of cutting-edge computational techniques to large, rich data sets of human behaviour.

Ultimately, this project seeks to understand changes in the U.K. geography of academic knowledge production over time and across two or more disciplines. All applicants are therefore expected to demonstrate an interest in the underlying social science research questions and (at a minimum) basic competence in programming. Additionally, the successful applicant for the 1+3 route would be expected to successfully complete King’s MSc Data Science programme, while the successful +3 applicant would be expected to demonstrate a degree of existing facility with core analytical approaches.

For more information on the project, please see here.

Studentship type

1+3 (1 year Masters + 3 year PhD) or +3 (PhD only), subject to candidate’s existing academic/professional background. For applicants with a social science background we are suggesting King’s MSc Data Science programme. For applicants with a natural science background we will need to discuss how best to achieve a grounding in the social sciences.

Application deadline

31 January 2018